1. Matsuoka,
K., Ma, Z.-X., Akiho, H., Zhang, Z.-G., Tomita, A., Fletcher. T. H.,
Wójtowicz, M. A., and Niksa, S., "High-pressure coal pyrolysis in a drop
tube furnace," Energy & Fuels 17, 984–990, 2003.
2. De
Jong, W., Pirone, A., and Wójtowicz, M. A., "Pyrolysis of Miscanthus
giganteus and wood pellets: TG-FTIR analysis and reaction kinetics,"
Fuel 82, 1139–1147, 2003.
3. Wójtowicz,
M. A., Bassilakis, R., Smith, W. W., Chen, Y., and Carangelo, R. M.,
"Modeling the evolution of volatile species during tobacco pyrolysis,"
Journal of Analytical and Applied Pyrolysis 66 (1-2), 235–261,
2003.
4. Holstein,
A., Bassilakis, R., Wójtowicz, M. A., and Serio, M. A., "The effect of coal
origin on the kinetics of methane and tar evolution during pyrolysis,"
Proc. Int. Symposium on Primary and Higher Order Structures of Coal and
Their Influence on Coal Reactivity, Zaocho, Karitagun, Miyagi, Japan,
March 15–16, 2001, Japan Society of Promotion of Science, pp. 155–164, 2001.
5. Serio,
M. A., Chen, Y., Wójtowicz, M. A. and Suuberg, E. M., “Pyrolysis processing
for solid waste resource recovery in space,” Proc. 30th Int.
Conf. on Environmental Systems, Toulouse, France, 10-13 July, 2000, SAE
technical paper No. 2000-01-2286.
6. Wójtowicz,
M. A., Bassilakis, R. and Serio, M. A., “Yields of pyrolysis products for
coals originating in different parts of the world,” Prospects for Coal
Science in the 21st Century (B. Q. Li and Z. Y. Liu, Editors), Proc. 10th
International Conference on Coal Science, Shanxi Science & Technology Press,
Taiyuan, China, 1999, vol. I, pp. 721–724.
7. Serio,
M. A., Wójtowicz, M. A., Charpenay, S., Chen, Y., Hamblen, D. G. and
Solomon, P. R., “Modeling Pyrolysis Behavior for International Coals,”
ACS Div. of Fuel Chem. Prepr., 44 (1), 153-156, 1999.
8. Wójtowicz,
M. A., Bassilakis, R., Charpenay, S., and Serio, M. A., “Comparison of
pyrolysis and combustion behavior of Japanese, Australian, and North
American coals,” Proceedings of the 6th Japan-China Symposium
on Coal and C1 Chemistry, Zao, Miyagi, Japan, 13-16 October,
1998, pp. 416–429.
9. Charpenay,
S., Wójtowicz, M. A. and Serio, M. A., "Pyrolysis kinetics of the waste-tire
constituents: extender oil, natural rubber, butadiene rubber, and
styrene-butadiene rubber," ACS Div. of Fuel Chem. Prepr. 43
(1), 185–191, 1998.
10. Chen,
Y., Charpenay, S., Jensen, A., Wójtowicz, M. A. and Serio, M. A., “Modeling
biomass pyrolysis kinetics,” Twenty-Seventh Symposium
(International) on Combustion, The Combustion Institute, Pittsburgh, PA,
1998, pp. 1327-1334
11. Chen,
Y., Charpenay, S., Jensen, A., Serio, M. A. and Wójtowicz, M. A., “Modeling
biomass pyrolysis in combustion,” Proc. 1997 Fall Technical
Meeting of the Eastern States Section of the Combustion Institute
“Chemical and Physical Processes in Combustion,” Hartford, CT, 27-29
October, 1997, pp. 147–150.
12. Chen,
Y., Charpenay, S., Jensen, A., Serio, M. A. and Wójtowicz, M. A., “Extension
of a coal pyrolysis model to biomass feedstocks,” Proc. 9th Int. Conf. on
Coal Science (A. Ziegler, K. H. van Heek, J. Klein and W. Wanzl, Eds.),
DGMK, Hamburg, Germany, 1997, pp. 561-564
13. Serio,
M. A., Wójtowicz, M. A., Bassilakis, R., Chen, Y., Charpenay, S. and Jensen,
A., “Measurement and modeling of coal quality effects,” Proceedings of
the Fifth International Conference on the Effects of Coal Quality on Power
Plants, Kansas City, MO, 20–22 May, 1997
14. Chen,
Y., Charpenay, S., Jensen, A., Serio, M. A. and Wójtowicz, M. A., “Modeling
biomass pyrolysis kinetics and mechanisms,” ACS Div. of Fuel Chem. Prepr.
42 (1), 96–102, 1997
15. Zhao,
Y., Serio, M.A., and Solomon, P.R., “A General Model for Devolatilization of
Large Coal Particles,” Twenty-Sixth Symposium (International) on
Combustion, The Combustion Institute, Pittsburgh, PA, 1996, pp.
3145–3151.
16. Charpenay,
S., Serio, M.A., Bassilakis, R., and Solomon, P.R., “Influence of Maturation
on the Pyrolysis Products of Coals and Kerogens - Part II - Modeling,”
Energy & Fuels 10(1),26 (1996).
17. Zhao,
Y., Serio, M.A., and Solomon, P.R., “Modeling the Devolatilization of Large
Coal Particles,” in Coal Science: Proceedings of the Eighth International
Conf. on Coal Science (J.A. Pajares and J.M.D. Tascón, Eds.), Elsevier,
Amsterdam, pp. 833-836 (1995).
18. Wójtowicz,
M.A., Zhao, Y., Serio, M.A., Bassilakis, R., Solomon, P.R., and Nelson, P.F.,
“Modeling of Hydrogen Cyanide and Ammonia Release During Coal Pyrolysis,” in
Coal Science: Proceedings of the Eighth International Conference on Coal
Science (J.A., Pajares and J.M.D. Tascón, Eds.), Elsevier, Amsterdam,
pp. 771-774 (1995).
19. Serio,
M.A., Zhao, Y., Wójtowicz, M.A., Charpenay, S., and Solomon, P.R.,
“Modeling of Coal Quality Effects Based on a Comprehensive Devolatilization
Model,” presented at the EPRI‑Sponsored Fourth Int. of Conf. on the Effects
of Coal Quality on Power Plants, Charleston, S.C., Aug. 17-19, 1994.
20. Zhao,
Y., Serio, M.A., Bassilakis, R., and Solomon, P.R., “A Method of
Predicting Coal Devolatilization Behavior Based on the Elemental Composition,”
Twenty-Fifth Symposium (Int.) on Combustion/The Combustion Institute, pp
553-560, (1994).
21. Zhao,
Y., Serio, M.A., and Solomon, P.R., “A Priori Simulation of Coal
Pyrolysis Experiments Based on Coal Elemental Compositions,” ACS Div. of
Fuel Chem. Prepr. 39 (2) 569, (1994).
22. Solomon,
P.R., and Serio, M., “Progress in Coal Pyrolysis Research,” ACS Div. of
Fuel Chem. Prepr. 39 (1), 69, (1994).
23. Serio,
M.A., Charpenay, S., Bassilakis, R., and Solomon, P.R., “Measurement and
Modeling of Lignin Pyrolysis,” Journal of Biomass & Bioenergy, Vol.
7, Nos. 1-6, pp 107-124, (1994).
24. Bassilakis,
R., Zhao, Y., Solomon, P. R. and Serio, M. A., “Sulfur and nitrogen
evolution in the Argonne coals: experiment and modeling,” Energy & Fuels
7, 710–720 (1993).
25. Solomon,
P.R., Fletcher, T.H., and Pugmire, R.J., “Progress in Coal Pyrolysis,”
Fuel, 72, (5), 587, (1993).
26. Solomon,
P.R., Hamblen, D.G., Serio, M.A., Yu, Z.Z., and Charpenay, S., “A
Characterization Method and Model for Predicting Coal Conversion Behavior,”
Fuel 72 (4), 469, (1993).
27. Hamblen,
D.G., Yu, Z.Z., Charpenay, S., Serio, M.A., and Solomon, P.R., “Comparison
of Percolation Theory and Monte Carlo Method Applied to Network Statistics
for Coal Pyrolysis,” Int. Conf. on Coal
Science,
Alberta, Canada, II (401), (1993).
28. Charpenay,
S., Serio, M.A., Solomon, P.R., “The Prediction of Coal Char Reactivity
Under Combustion Conditions,” 24th Symp. (International) on Combustion,
The Combustion Institute, Pittsburgh, PA, pp. 1189-1197, (1992).
29. Solomon,
P.R., Best, P.E., Yu, Z.Z., and Charpenay, S., “An Empirical Model for Coal
Fluidity Based on a Macromolecular Network Pyrolysis Model,” Energy &
Fuels, 6, 143, (1992).
30. Solomon,
P.R., Serio, M.A., Suuberg, E.M., “Coal Pyrolysis: Experiments, Kinetic
Rates and Mechanisms,” Prog. Energy Combust. Sci., 18, 133
(1992).
31. Solomon,
P.R., Charpenay, S., Yu, Z.Z., Serio, M.A., Kroo, E., Solum, M.S., and
Pugmire, R.J., “Network Changes During Coal Pyrolysis: Experiment and
Theory,” Proceedings of the 1991 Int. Conf. on Coal Science,
Newcastle, England, pp. 484-487, (1991).
32. Serio,
M.A., Charpenay, S., Bassilakis, R., and Solomon, P.R., “Pyrolysis of
Phenol-Formaldehyde Resin: Experiments and Modeling,” ACS Div. of Fuel
Chem. Preprints, 36, (2), 664, (1991).
33. Carangelo,
R.M., Serio, M.A., Solomon, P.R., Charpenay, S., Yu, Z.Z., and Bassilakis,
R., “Coal Pyrolysis: Measurements and Modeling of Product Evolution
Kinetics and Char Properties,” ACS Div. of Fuel Chem. Preprints,
36 (2), 796, (1991).
34. Solomon,
P.R., Hamblen, D.G., Serio, M.A., Yu, Z.Z., Charpenay, S., “Can Coal Science
be Predictive?” Storch Award Symposium Lecture, ACS Div. of Fuel
Chemistry Preprints, 36 (1) 267, (1991).
35. Solomon,
P.R., Serio, M.A., Carangelo, R.M., Bassilakis, R., Yu, Z.Z., Charpenay, S.,
and Whelan, J., “Analysis of Coal by TG-FTIR and Pyrolysis Modeling,”
presented at the Pyrolysis '90 Meeting in Holland, June 1990, also published
in Journal of Analytical and Applied Pyrolysis, 19, 1, (1991).
36. Solomon,
P.R., Serio, M.A., Hamblen, D.G., Yu, Z.Z., and Charpenay, S., “Advances in
the FG-DVC Model of Coal Devolatilization,” ACS Div. of Fuel Chem.
Preprints, 35, (2), 479, (1990).
37. Solomon,
P.R., Hamblen, D.G., Yu, Z.Z., and Serio, M.A., “Network Models of Coal
Thermal Decomposition,” Fuel 69, 754, (1990).
38. Serio,
M.A., Solomon, P.R., Yu, Z.Z., and Deshpande, G.V., “An Improved Model of
Coal Devolatilization,” Int. Conference on Coal Science Proceedings,
IEA, Tokyo, Japan, p. 209, (1989).
39. Solomon,
P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., and Deshpande, G.V.,
“General Model of Coal Devolatilization,” Energy and Fuel 2,
405, (1988).
40. Solomon,
P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A. and Deshpande, G.V.,
“Models of Tar Formation During Coal Devolatilization,” Combustion and
Flame 71, 137, (1988).
41. Solomon,
P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., and Deshpande, G.V., “A
General Model of Coal Devolatilization,” ACS Div. of Fuel Chem. Prepr.
32 (3), 83, (1987).
42. Solomon, P.R., Hamblen, D.G.,
Deshpande, G.V., and Serio, M.A., “A General Model of Coal Devolatilization,”
in Coal Science & Technology 11, (J.A. Moulijn, K.A. Nater,
and H.A.G. Chermin, Eds.) 597, Elsevier Science Publishers, Amsterdam,
(1987).